Powers FASTENERS

Drive[®] Pre-Expanded Anchor

PRODUCT DESCRIPTION

The Drive is a one-piece, tamperproof, pre-expanded anchor available in carbon steel for use in concrete and stone. Tie-Wire Drive anchors are used for suspended ceiling applications. The flat head (counter-sunk) style is particularly suited for wood-to-concrete anchoring. The round head style can be used for all other applications requiring fast, permanent installations.

GENERAL APPLICATIONS AND USES

• Tamper Proof Applications • Suspended Ceilings

FEATURES

- Pre-expanded anchor design allows for easy installation.
- Round and flat head anchors are tamper proof

APPROVALS AND LISTINGS

Underwriters Laboratory (UL Listed) – VFXT. EX1289 FM Global (Factory Mutual) J.I. OK4A9.AH

GUIDE SPECIFICATIONS

CSI Divisions: 03151-Concrete Anchoring and 05090-Metal Fastenings. Pre-expanded anchors shall be Drive as supplied by Powers Fasteners, Inc., Brewster, NY.

MATERIAL SPECIFICATIONS

Anchor Component	Component Material
Anchor Body	Heat Treated AISI 1018
Zinc Plating	ASTM B633, SC1, Type III (Fe/Zn 5)

INSTALLATION SPECIFICATIONS

Round Head Drive

	Anchor Size, <i>d</i>				
Dimension	3/16"	1/4"	3/8"	1/2"	
ANSI Drill Bit Size, d_{bit} (in.)	3/16	1/4	3/8	1/2	
Fixture Clearance Hole, d_h (in.)	1/4	5/16	7/16	9/16	
Head Height (in.)	3/32	1/8	3/16	1/4	
Head Width (in.)	3/8	1/2	3/4	1	

Flat Head Drive

	Anchor Size, <i>d</i>			
Dimension	3/16"	1/4"		
ANSI Drill Bit Size, <i>d</i> _{bit} (in.)	3/16	1/4		
Fixture Clearance Hole, d_h (in.)	1/4	5/16		
Head Height (in.)	7/64	9/64		
Head Width (in.)	3/8	1/2		

Tie-Wire Drive

	Anchor Size, d
Dimension	1/4"
ANSI Drill Bit Size, <i>d</i> _{bit} (in.)	1/4
Head Height (in.)	5/8
Tie-Wire Hole Diameter (in.)	13/64

SECTION	CONTENTS	Page No.
		ragentor

	_
General Information	1
Material Specifications	1
Installation Specifications	1
Performance Data	2
Design Criteria	2
Ordering Information	4

Round Head Drive

0

Tie-Wire Drive

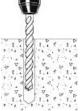
HEAD STYLES

Round Head Flat Head Tie-Wire

ANCHOR MATERIALS

Zinc Plated Carbon Steel

ANCHOR SIZE RANGE (TYP.)


3/16" diameter to 1/2" diameter

SUITABLE BASE MATERIALS

Normal-Weight Concrete

Installation Guidelines

Drill a hole into the base material to a depth of at least 1/2" deeper than the embedment required. The tolerances of the drill bit used must meet the requirements of ANSI Standard B212.15. Blow the hole clean of dust and other material.

Drive the anchor into the hole until the head is firmly seated against the fixture. Be sure the anchor is driven to the required embedment depth. The tie-wire Drive should be driven in until the head is flush against the surface of the base material. ANCHORS

PERFORMANCE DATA

Ultimate Load Capacities for Drive in Normal-Weight Concrete^{1,2}

Anchor	Minimum	Minimum Concrete Compressive Strength (f_c)					
Diameter	Embedment Depth	2,000 psi (13.8 MPa)		4,000 psi (27.6 MPa)		6,000 psi (41.4 MPa)	
d	h _v	Tension	Shear	Tension	Shear	Tension	Shear
in.	in.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.
(mm)	(mm)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)
3/16	7/8	700	1,100	1,080	1,365	1,080	1,370
(4.8)	(22.2)	(3.2)	(5.0)	(4.9)	(6.1)	(4.9)	(6.2)
1/4	1 1/8	1,320	1,665	1,760	2,090	1,760	2,090
(6.4)	(28.6)	(5.9)	(7.5)	(7.9)	(9.4)	(7.9)	(9.4)
3/8	1 7/8	2,275	5,580	4,240	7,030	4,240	7,030
(9.5)	(47.6)	(10.2)	(25.1)	(19.1)	(31.6)	(19.1)	(31.6)
1/2	2 5/8	2,560	7,945	4,960	10,205	4,960	10,205
(12.7)	(66.7)	(11.5)	(35.8)	(22.3)	(45.9)	(22.3)	(45.9)

1. Ultimate load capacities should be reduced by a minimum safety factor of 4.0 or greater to determine the allowable working load. Consideration of safety factors of 10 or higher may

be necessary depending on the application, such as life safety or overhead. 2. Linear interpolation may be used to determine ultimate loads for intermediate compressive strengths.

Allowable Load Capacities for Drive in Normal-Weight Concrete^{1,2}

Anchor	Minimum	Minimum Concrete Compressive Strength (f_c)					
Diameter	Embedment Depth	2,000 psi (13.8 MPa)		4,000 psi (27.6 MPa)		6,000 psi (41.4 MPa)	
d	<i>h</i> _v	Tension	Shear	Tension	Shear	Tension	Shear
in.	in.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.
(mm)	(mm)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)
3/16	7/8	175	275	270	340	270	345
(4.8)	(22.2)	(0.8)	(1.2)	(1.2)	(1.5)	(1.2)	(1.6)
1/4	1 1/8	330	415	440	525	440	525
(6.4)	(28.6)	(1.5)	(1.9)	(2.0)	(2.4)	(2.0)	(2.4)
3/8	1 7/8	570	1,395	1,060	1,760	1,060	1,760
(9.5)	(47.6)	(2.6)	(6.3)	(4.8)	(7.9)	(4.8)	(7.9)
1/2	2 5/8	640	1,985	1,240	2,550	1,240	2,550
(12.7)	(66.7)	(2.9)	(8.9)	(5.6)	(11.5)	(5.6)	(11.5)

1. Allowable load capacities are calculated using an applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

2. Linear interpolation may be used to determine allowable loads for intermediate compressive strengths.

DESIGN CRITERIA (ALLOWABLE STRESS DESIGN)

Combined Loading

For anchors loaded in both shear and tension, the combination of loads should be proportioned as follows:

$$\left(\frac{N_u}{N_n}\right) + \left(\frac{V_u}{V_n}\right) \le 1$$

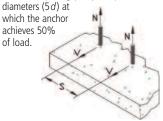
Where: N_u = Applied Service Tension Load N_n = Allowable Tension Load V_u = Applied Service Shear Load

 V_n = Allowable Shear Load

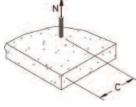
Load Adjustment Factors for Spacing and Edge Distances

	Anchor Installed in Normal-Weight Concrete							
Anchor Dimension	Load Type	Critical Distance (Full Anchor Capacity)	Critical Load Factor	Minimum Distance (Reduced Capacity)	Minimum Load Factor			
Spacing (s)	Tension and Shear	<i>Scr</i> = 10 <i>d</i>	$F_{NS} = F_{VS} = 1.0$	smin = 5d	$F_{N_{\rm S}} = F_{V_{\rm C}} = 0.50$			
Edge Distance (<i>c</i>)	Tension	<i>Ccr</i> = 12 <i>d</i>	$F_{NC} = 1.0$	c _{min} = 5d	$F_{N_{C}} = 0.80$			
Euge Distance (c)	Shear	$c_{cr} = 12d$	$F_{VC} = 1.0$	c _{min} = 5d	$F_{VS} = 0.50$			

owers FASTENERS


PRODUCT INFORMATION

DESIGN CRITERIA (ALLOWABLE STRESS DESIGN)


Load Adjustment Factors for Normal-Weight Concrete

	Spacing, Tension (F_{N_S}) & Shear (F_{V_S})								
Dia	Dia. (in.) 3/16 1/4 3/8 1/2								
S _{cr}	(in.)	1 7/8	2 1/2	3 3/4	5				
Smi	n (in.)	1	1 1/4	1 7/8	2 1/2				
	1	0.50							
(inches)	1 1/4	0.67	0.50						
СР	1 7/8	1.00	0.75	0.50					
(ju	2		0.80	0.53					
S	2 1/2		1.00	0.67	0.50				
ng	3			0.80	0.60				
Spacing,	3 3/4			1.00	0.75				
Sp	4				0.80				
	5				1.00				

Notes: For anchors loaded in tension and shear, the critical spacing (s_{cr}) is equal to 10 anchor diameters (10*d*) at which the anchor achieves 100% of load. Minimum spacing (smin) is equal to 5 anchor

Notes: For anchors loaded in tension, the critical edge distance (ccr) is equal to 12 anchor diameters (12d) at which the anchor achieves 100% of load. Minimum edge distance (cmin) is equal to 5 anchor diameters (5d) at which the anchor achieves 80% of load.

Notes: For anchors loaded in shear, the critical edge distance (c_{cr}) is equal to 12 anchor diameters (12d)at which the anchor achieves 100% of load. Minimum edge distance (c_{min}) is equal to 5 anchor diameters (5d) at which the anchor achieves 50% of load.

	Edge Distance, Tension (<i>F_{NC}</i>)								
Dia	Dia. (in.) 3/16 1/4 3/8 1/2								
	(in.)	2 1/4	3	4 1/2	6				
C _{mi}	n (in.)	1	1 1/4	1 7/8	2 1/2				
	1	0.80							
	1 1/4	0.85	0.80						
es)	1 7/8	0.94	0.87	0.80					
(inches)	2	0.96	0.89	0.81					
	2 1/4	1.00	0.91	0.83					
υ,	2 1/2		0.94	0.85	0.80				
Distance,	2 3/4		0.97	0.87	0.81				
tar	3		1.00	0.89	0.83				
Si	3 1/2			0.92	0.86				
	4			0.96	0.89				
Edge	4 1/2			1.00	0.91				
-	5				0.94				
	6				1.00				

	Edge Distance, Shear (<i>F_{v_c}</i>)									
Dia	Dia. (in.) 3/16 1/4 3/8 1/2									
Ccr	(in.)	2 1/4	3	4 1/2	6					
C _{mi}	in (in.)	1	1 1/4	1 7/8	2 1/2					
	1	0.50								
	1 1/4	0.62	0.50							
es)	1 7/8	0.86	0.68	0.50						
(inches	2	0.90	0.71	0.52						
	2 1/4	1.00	0.79	0.57						
U S	2 1/2		0.86	0.62	0.50					
Distance,	2 3/4		0.93	0.67	0.54					
tar	3		1.00	0.71	0.57					
Bi	3 1/2			0.81	0.64					
	4			0.90	0.71					
Edge	4 1/2			1.00	0.79					
	5				0.86					
	6				1.00					

Drive®

MECHANICAL ANCHORS

ORDERING INFORMATION

Round Head Drive

Cat. No.	Size	Drill Dia.	Min. Embed.	Std. Box	Std. Carton	Wt./100
3211	1/4" x 1 1/4"	1/4"	1 1/8"	100	1,000	1 3/4
3241	1/4" x 1 1/2"	1/4"	1 1/8"	100	1,000	2 1/2
3271	1/4" x 2"	1/4"	1 1/8"	100	1,000	3
3301	1/4" x 2 1/2"	1/4"	1 1/8"	100	1,000	3 3/4
3601	3/8" x 2"	3/8"	1 7/8"	25	250	7 1/2
3631	3/8" x 2 1/2"	3/8"	1 7/8"	25	250	8 1/2
3691	3/8" x 3 1/2"	3/8"	1 7/8"	25	250	11 3/4
3781	1/2" x 3"	1/2 "	2 5/8"	25	125	25

Flat Head Drive

Cat. No.	Size	Drill Dia.	Min. Embed.	Std. Box	Std. Carton	Wt./100
3092	3/16" x 1 1/2"	3/16"	7/8"	100	1,000	1 1/4
3122	3/16" x 2"	3/16"	7/8"	100	1,000	1 3/4
3152	3/16" x 2 1/2"	3/16"	7/8"	100	1,000	2
3162	3/16" x 3"	3/16"	7/8"	100	1,000	2 1/2
3242	1/4" x 1 1/2"	1/4"	1 1/8"	100	1,000	2 1/2
3272	1/4" x 2"	1/4"	1 1/8"	100	1,000	3
3302	1/4" x 2 1/2"	1/4"	1 1/8"	100	1,000	3 3/4
3332	1/4" x 3"	1/4"	1 1/8"	100	1,000	4 1/2
3362	1/4" x 3 1/2"	1/4"	1 1/8"	100	1,000	5
3392	1/4" x 4"	1/4"	1 1/8"	100	500	5 3/4

Tie-Wire Drive (13/64" Tie-Wire Hole)

Cat. No.	Size	Drill Dia.	Min. Embed.	Std. Box	Std. Carton	Wt./100
3244	1/4" x 1 3/4" Master Pack	1/4"	1 1/8"	500	500	2 1/2
3245	1/4" x 1 3/4"	1/4"	1 1/8"	100	500	2 1/2
3250	Tie-Wire Setting Tool	-	_	1	1	1/4

© 2009 Powers Fasteners, Inc. All Rights Reserved. Drive is a registered trademark of Powers Fasteners, Inc. For the most current product information please visit www.powers.com.

Powers USA: (800) 524-3244 or (914) 235-6300